Bitewing Radiography Semantic Segmentation Base on Conditional Generative Adversarial Nets
نویسندگان
چکیده
Bitewing Radiography Semantic Segmentation Base on Conditional Generative Adversarial Nets JiangYun;TanNing;ZhangHai;PengTingting 【Abstract】 Currently, Segmentation of bitewing radiograpy images is a very challenging task. The focus of the study is to segment it into caries, enamel, dentin, pulp, crowns, restoration and root canal treatments. The main method of semantic segmentation of bitewing radiograpy images at this stage is the U-shaped deep convolution neural network, but its accuracy is low. in order to improve the accuracy of semantic segmentation of bitewing radiograpy images, this paper proposes the use of Conditional Generative Adversarial network (cGAN) combined with Ushaped network structure (U-Net) approach to semantic segmentation of bitewing radiograpy images. The experimental results show that the accuracy of cGAN combined with U-Net is 69.7%, which is 13.3% higher than the accuracy of u-shaped deep convolution neural network of 56.4%. 【Key words】Generative Adversarial Nets(GAN);Semantic Segmentation;deep leaning; U-Nets;Adversarial Leaning
منابع مشابه
A Conditional Adversarial Network for Semantic Segmentation of Brain Tumor
Automated medical image analysis has a significant value in diagnosis and treatment of lesions. Brain tumors segmentation has a special importance and difficulty due to the difference in appearances and shapes of the different tumor regions in magnetic resonance images. Additionally the data sets are heterogeneous and usually limited in size in comparison with the computer vision problems. The ...
متن کاملConditional Generative Adversarial Nets
Generative Adversarial Nets [8] were recently introduced as a novel way to train generative models. In this work we introduce the conditional version of generative adversarial nets, which can be constructed by simply feeding the data, y, we wish to condition on to both the generator and discriminator. We show that this model can generate MNIST digits conditioned on class labels. We also illustr...
متن کاملConditional generative adversarial nets for convolutional face generation
We apply an extension of generative adversarial networks (GANs) [8] to a conditional setting. In the GAN framework, a “generator” network is tasked with fooling a “discriminator” network into believing that its own samples are real data. We add the capability for each network to condition on some arbitrary external data which describes the image being generated or discriminated. By varying the ...
متن کاملCross-View Image Synthesis using Conditional GANs
Learning to generate natural scenes has always been a challenging task in computer vision. It is even more painstaking when the generation is conditioned on images with drastically different views. This is mainly because understanding, corresponding, and transforming appearance and semantic information across views is not trivial. In this paper, we attempt to solve the novel problem of cross-vi...
متن کاملHigh-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
We present a new method for synthesizing highresolution photo-realistic images from semantic label maps using conditional generative adversarial networks (conditional GANs). Conditional GANs have enabled a variety of applications, but the results are often limited to lowresolution and still far from realistic. In this work, we generate 2048 × 1024 visually appealing results with a novel adversa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.02571 شماره
صفحات -
تاریخ انتشار 2018